1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| library(dplyr) library(magrittr) library(ggplot2) library(stringr)
filenames<-list.files("./Binlang",pattern = ".csv") precpdf<-read.csv(paste0("./Binlang/",filenames[1]),skip = 1,colClasses = "character") %>% mutate(month=str_sub(filenames[1],-6,-5)) for (i in 2:length(filenames)) { dttemp<-read.csv(paste0("./Binlang/",filenames[i]),skip = 1,colClasses = "character") %>% mutate(month=str_sub(filenames[i],-6,-5)) precpdf<-bind_rows(precpdf,dttemp) } precpdf$Precp<-as.numeric(precpdf$Precp) precpdf<-precpdf %>% group_by(month) %>% summarise(precp=sum(Precp,na.rm = T)) %>% ungroup()
p<-ggplot(data = precpdf,aes(x=month,y=precp))+ geom_bar(stat = "identity")+ labs(title = "Binlang")+ geom_text(aes(y=precp,label=precp),vjust=-0.5)+ theme_classic()+ theme(plot.title = element_text(hjust = 0.5))+ scale_y_continuous(limits = c(0,850)) p ggsave(filename = "Binlang_2021_precp.png",width = 15,height = 10,units = "cm")
|